The Priming of Informationally Weaker Alternatives:

Antonyms and Negation

Radim Lacina^{1,2}, Stavroula Alexandropoulou³, Eszter Ronai⁴ & Nicole Gotzner¹

¹Osnabrück University ²University of Potsdam, ³University College London, ⁴Northwestern University

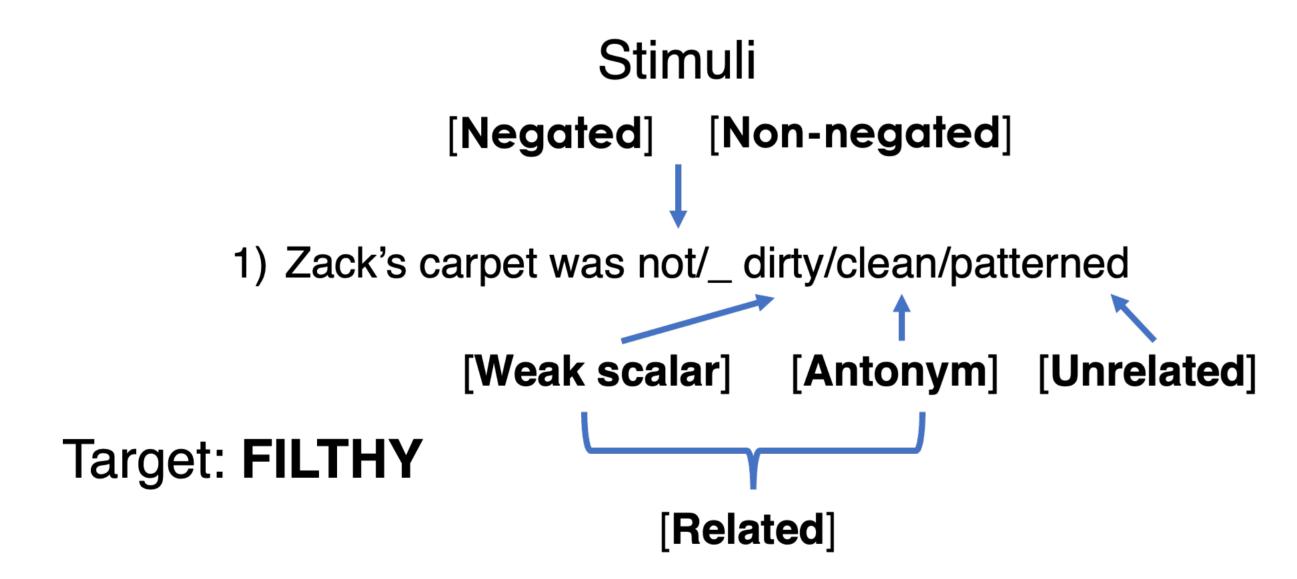
1. INTRODUCTION

- Informational strength has been seen as key when it comes to scalar implicature (SI) derivation (Horn, 1972)
- Most accounts of SIs say that stronger alternatives are needed
- Are stronger alternatives active in comprehenders' minds?
- Ronai & Xiang (2023) tested the activation of strong scalars (hot) by weak ones (warm)
 - When they presented isolated scalar words, there was no priming
 - The strong terms were shown to be activated in a sentential context – suggesting involvement in SI derivation

Which alternatives are relevant during online SI derivation?

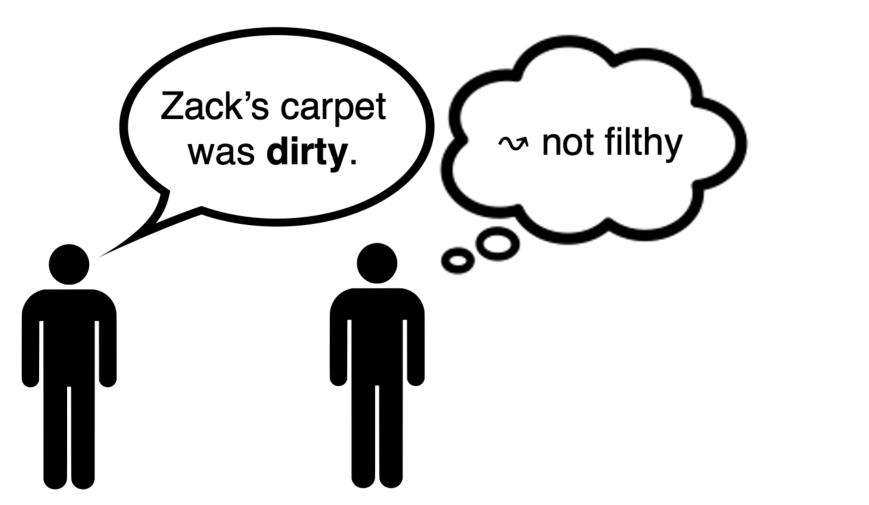
2. HYPOTHESES & ACCOUNTS

- No activation when informational strength relations change
 - **Negation** can reverse entailment relations (Horn, 1972)
 - Scalar words such as hot are no longer stronger than warm
- Are antonyms also present in the process?


The **Scalar Account** (Horn, 1972) suggests that only stronger alternatives are relevant, antonyms play no role due to the split-scale assumption

The **Semantic Network Account** accounts for any alternative activation effects as simply epiphenomenal byproducts of spreading activation

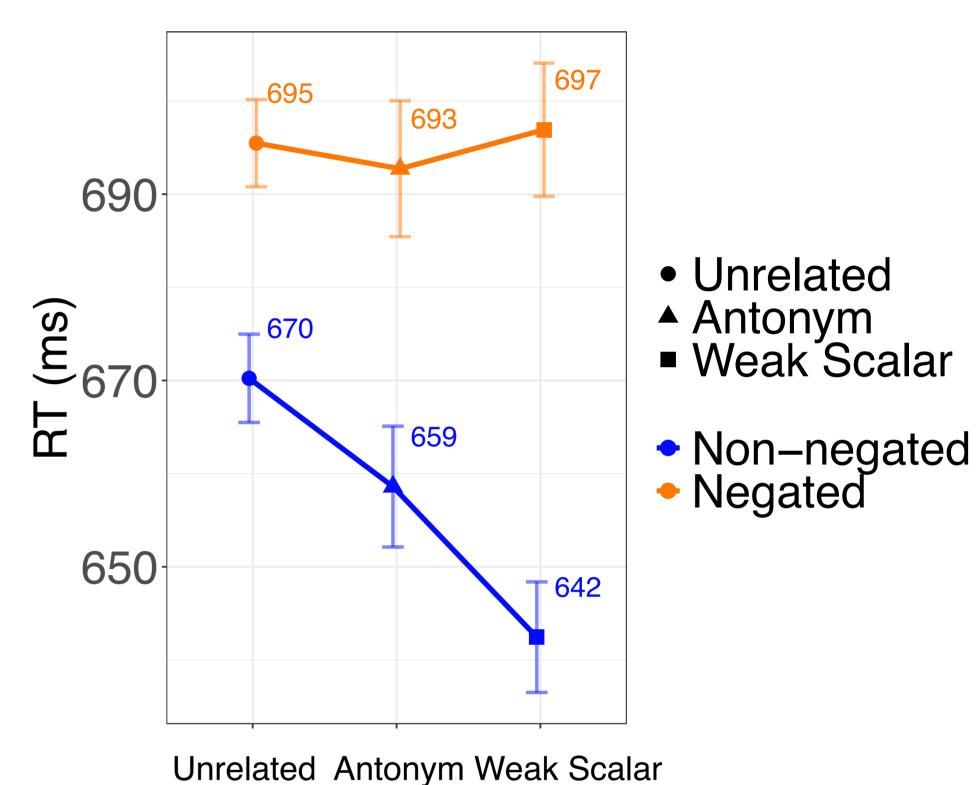
The **Alternative Activation Account** proposes domain-general activation followed by selection based on contextual and grammatical factors (Gotzner, 2017)


4. METHODS

- Four lexical decision experiments on PCIbex (N = 50 each)
- Single factor: Related vs unrelated
- Related: either weak scalar or antonym
- RSVP (350ms per word, 650ms SOA)
- Experiment 3: Only prime words (clean) and targets (filthy)
- 150ms per prime, 650ms SOA

SCALAR IMPLICATURES:

LEXICAL DECISION TASK:


"Is this a word of English?"

5.PREDICTIONS & RESULTS:

Account/ Prime type	Scalar Account	Alternative Activation Account
Scalars		
Negated Scalars	X	X
Antonyms	X	
Negated Antonyms	X	X

Experiment	Estimate	SE	df	t-value	p-value
Exp 1: Negated	0.0081	0.011	32.23	0.71	0.483
weak scalars					
Exp 2: Antonyms	0.0238	800.0	2846	2.93	0.0034*
in sentences					
Exp 3: Antonyms	0.0248	0.009	2665	2.75	0.0061**
in isolation					
Exp 4: Negated	-0.001	0.013	29.37	-0.05	0.958
antonyms					

COMBINED PLOT: EXP 1, 2, & 4 + EXP 3 (R&X, 2023)

6. RESULTS: COMBINED ANALYSIS

Combined data from Exp 1, 2, & 4 and Exp 3 from Ronai & Xiang (2023), which tested non-negated weak scalars

We created a 2 x 3 factorial design

Negation: Non-negated (baseline) vs. negated

Prime: Weak scalar vs. antonym vs. unrelated (baseline)

Factor	Estimate	SE	df	t-value	p-value
Negation	0.03	0.028	200.5	1.117	0.26513
Weak scalar	-0.04	0.009	8922	-4.390	0.0001***
Antonym	-0.023	0.009	8915	-2.625	0.00867**
Negation: Weak scalar	0.028	0.013	8917	2.164	0.03049*
Negation: Antonym	0.026	0.013	8917	1.954	0.05069

7. DISCUSSION

- Negation cancels the activation of targets
 - Informational strength matters
- Negation influences activation differently when weak scalar vs antonym primes are used
- Antonymic primes primed targets both in sentences and in isolation
 - An epiphenomenon in online SI derivation?
- But see Doran et al. (2009) a.o. for evidence that non-entailed alternatives facilitate SI derivation
- Most compatible with the Alternative Activation Account
 - Comprehenders seem to activate a slew of associates (antonyms) and then select depending on the grammar (negation) and context

