Helena Aparicio (Cornell University) & Eszter Ronai (Northwestern University) SALT 33

Scalar Diversity

Lexical scales differ in how likely they are to lead to scalar implicature (SI), e.g., (1) more likely than (2), see van Tiel et al. (2016):

- (1) The museum is **old** \rightarrow The museum is **not ancient**
- The employee is smart \rightarrow (2) The employee is **not brilliant**

Role of carrier sentences remains understudied (van Tiel et al. (2016) found no difference, cf. Degen (2015) for <some, all>).

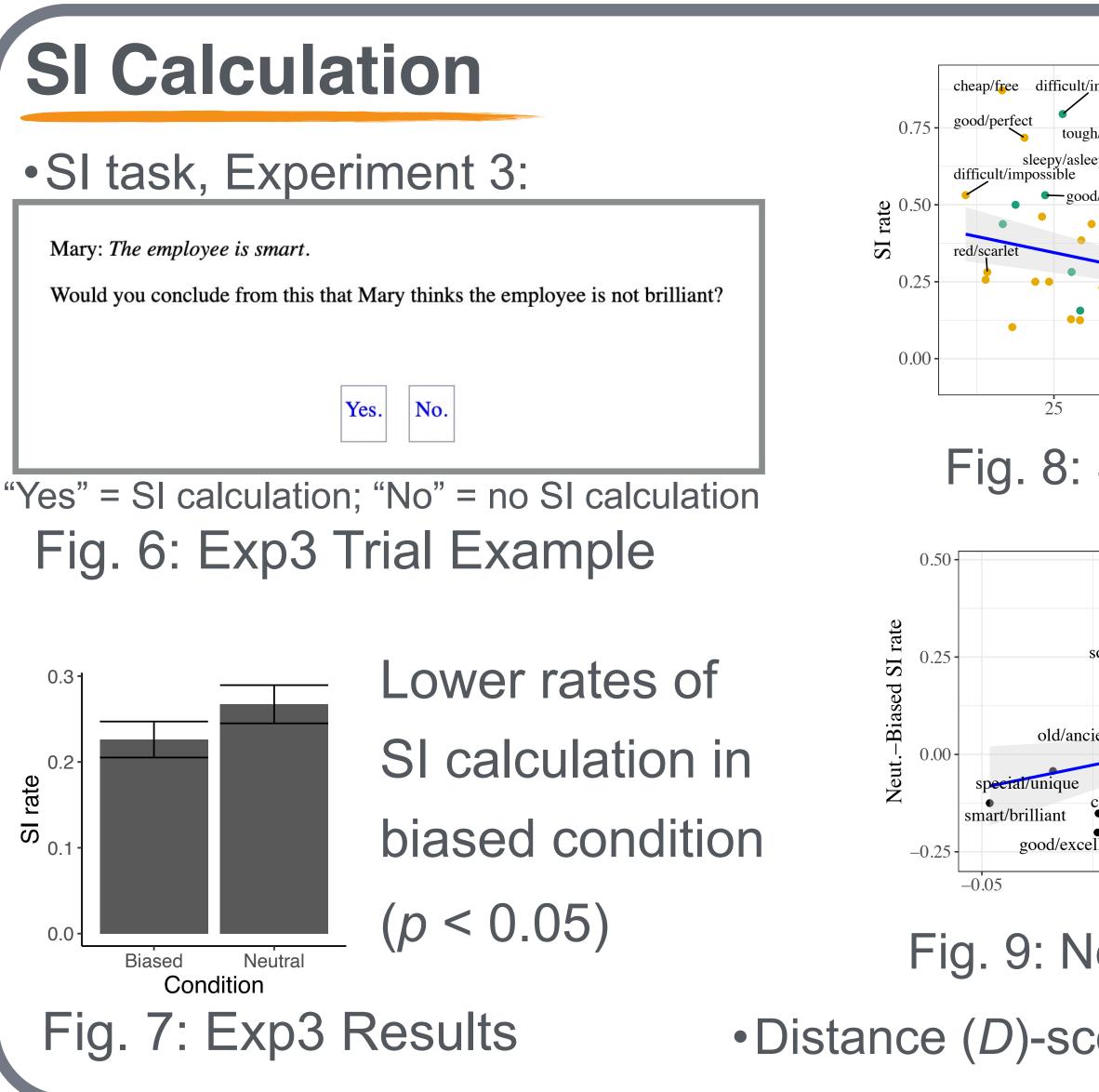
Research Question

What is the role of sentential context in scalar diversity?

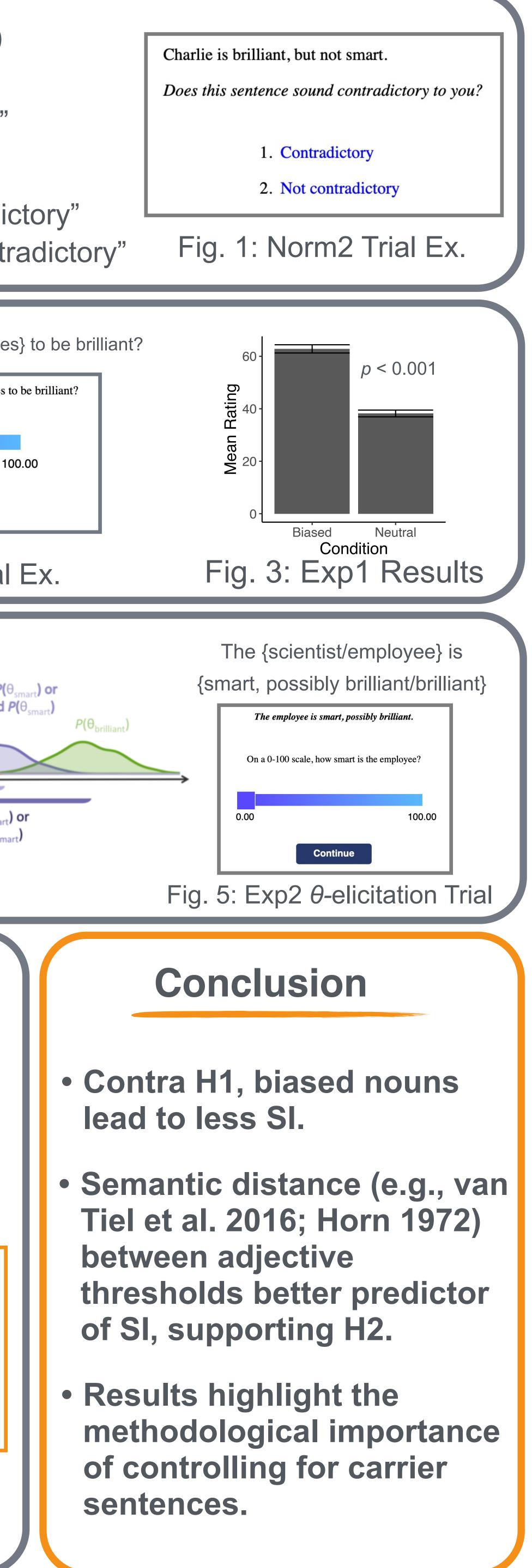
Does likelihood of Comparison Class (CC) having adjectival property modulate SI rates?

Manipulate CC: whether the noun (e.g., *scientist* vs. *employee*) is likely to have adjectival property (e.g., brilliance).

Gathering CCs (Norm. Study 1)


•Shown stronger scalemates (e.g., brilliant) •Elicit nouns likely to have the property •Two nouns selected per scale: one high frequency ("biased") and one very infrequent (\approx 1 count; "neutral").

Contact: <u>haparicio@cornell.edu</u> ronai@northwestern.edu Task 1 (de Marneffe & Tonhauser, 2019) Charlie is brilliant, but not smart. X is brilliant... and even smart — "Odd" Does this sentence sound contradictory to you? X is smart... and even brilliant — "Not odd" 1. Contradictory Task 2 2. Not contradictory X was brilliant... but not smart — "Contradictory" Fig. 1: Norm2 Trial Ex. X was smart... but not brilliant — "Not contradictory" How likely are {scientists, employees} to be brilliant? *p* < 0.001 On a 0-100 scale, how likely are employees to be brilliant? 100.00 0.00 Continue Neutral Condition Fig. 3: Exp1 Results Fig. 2: Exp1 Trial Ex. (3) $P(\theta_w | \theta_{\neg s}) \propto P(\theta_{\neg s} | \theta_w) P(\theta_w)$ The {scientist/employee} is {smart, possibly brilliant/brilliant} Posterior $P(\theta_{smart})$ or SI-enriched P(0 Likelihood SI-enriched P(0smart Likelihood The employee is smart, possibly brilliant. **Ρ(**θ_{¬brilliant} | θ_{smart}) $P(\theta_{\neg brilliant} | \theta_{smart})$ On a 0-100 scale, how smart is the employee? *Prior P*(θ_{smart}) or *Prior P*(θ_{smart}) or CC = Scientists No-SI P(θ No-SI P(θ_{smart} CC = EmployeesFig. 4: Model Predictions Continue Fig. 5: Exp2 θ-elicitation Trial Conclusion Contra H1 tough/impossible sleepy/asleep___warm/hot Likelihood and SI Condition Biased • Contra H1, biased nouns negatively correlated • Neutral lead to less SI. (r = -0.42, p < 0.001)Yes. No. • Semantic distance (e.g., van Fig. 8: SI rate ~ likelihood Tiel et al. 2016; Horn 1972) between adjective ● warm/hot In line with H2 thresholds better predictor soft/mushy tough/impossi D-score positively Lower rates of of SI, supporting H2. correlated with SI calculation in neutral-biased SI rate Results highlight the biased condition (r = 0.36, p < 0.02)methodological importance of controlling for carrier D score (p < 0.05)Fig. 9: Neut-Bias SI rate ~ *D*-score


- •Criterion: above 60% expected response

Scalar implicatures vary within and across adjectival scales **Gathering Scales (Norming Study 2)** •77 adjectival scales from previous work normed for cancellability and asymmetric entailment. •Result: 45 scales Hypothesis 1: Likelihood •SI: reasoning about what was left unsaid (Grice, 1967; Horn, 1972) •Biased nouns: the stronger adjective very likely to be true \rightarrow its non-utterance is especially meaningful H1 predicts higher SI rates for biased compared to neutral CCs. Hypothesis 2: Threshold distance adjectival thresholds discourages SI calculation H2 predicts higher SI rates for neutral compared to biased CCs.

- •Semantic distance: close proximity between •Elicit threshold (θ) distributions

• Distance (D)-score: (3) $d_n = (\mu_{s_n} - \mu_{w_n}) / \sigma_{s_n} \sigma_{w_n}$ (4) $D = d_{n_{neut.}} - d_{n_{bias.}}$

